Posts

Showing posts from May, 2016

Upcoming F# struct tuples: are they always faster?

Image
Don Syme  has been working  on struct tuples for F# language. Let's see if they are more performant than "old" (heap allocated) tuples in simple scenario: returning tuple from function. The code is very simple: Decompiled code in Release configuration: Everything we need to change to switch to struct tuples, is adding "struct" keyword in front of constructor and pattern matching: Decompiled code in Release configuration: I don't know about you, but I was surprised with those results. The performance roughly the same. GC is not a bottleneck as no objects were promoted to generation 1. Conclusions: Using struct tuples as a faster or "GC-friendly" alternative to return multiple values from functions does not make sense. Building in release mode erases away heap allocated tuples, but not struct tuples. Building in release mode inlines the "foo" function, which makes the code 10x faster. You can fearlessly allo

Hash maps: Rust, F#, D, Go, Scala

Image
Let's compare performance of hashmap implementation in Rust, .NET, D (LDC) and Go. Rust: F#: As you can see, Rust is slower at about 17% on insersions and at about 21% on lookups. Update As @GolDDranks suggested on Twitter , since Rust 1.7 it's possible to use custom hashers in HashMap. Let's try it: Yes, it's significantly faster: additions is only 5% slower than .NET implementation, and lookups are 32% *faster*! Great. Update: D added LDC x64 on windows It's very slow at insertions and quite fast on lookups. Update: Go added Update: Scala added Compared to Scala all the other languages looks equally fast :) What's worse, Scala loaded all four CPU cores at almost 100% during the test, while others used roughly single core. My guess is that JVM allocated so many objects (each Int is an object, BTW), that 3/4 of CPU time was spend for garbage collecting. However, I'm a Scala/JVM noob, so I just could write the whole b

Akka.NET Streams vs Hopac vs AsyncSeq

Image
Akka.NET Streams is a port of its Scala/Java counterpart and intended to execute complex data processing graphs, optionally in parallel and even distributed. It has quite different semantics compared to Hopac's one and it's wrong to compare them feature-by-feature, but it's still interesting to benchmark them in a scenario which both of them supports well: read lines of a file asynchronously, filter them by a regex in controlled degree of parallelism, then normalize the lines with a simple string manipulation algorithm, also in parallel, then count the number of lines. Firts, Akka.NET: Note that I have to use the empty string as indication that the regular expression does not match. I should use `option ` of course (just like I do in the Hopac snippet below), but Akka.NET Streams is strict about what is allowed to be returned by its combinators like `Map` or `Filter`, in particular, you cannot return `null`, doing so makes Akka.NET unhappy and it will throw exception